NDU

MAT 224 Calculus IV

Final Exam

Thursday, June 16, 2016 Duration: 2 hours

Name	
Section	
Instructor	

Cell phones are forbidden
You have 6 exercises and 8 pages.

1) (55 points) For each of the multiple choice questions below, circle the <u>letter</u> of the correct answer. If more than one letter is circled in the same problem, you will receive no credit for that problem.

Question A

Let
$$f(x, y) = \ln \left(e + \frac{xy^3 - x^4}{x^2 + y^2} \right)$$
. Then:

- a) f(x, y) can be extended to become continuous at (0,0) by defining f(0,0) = 0.
- b) f(x, y) can be extended to become continuous at (0,0) by defining f(0,0) = e.
- c) f(x, y) can be extended to become continuous at (0,0) by defining f(0,0)=1.
- d) f(x, y) cannot be extended in any way to make it continuous at (0,0).

Question B

Let w = f(x, y, z) be a differentiable function with $x = \sin u + \ln v$, $y = \sin v + \ln u$, $z = \frac{u}{v}$, then

$$\frac{\partial w}{\partial v}$$
 at $(u,v) = (\frac{\pi}{4}, \frac{\pi}{4})$ is:

a)
$$\frac{4}{\pi} f_x + \frac{\sqrt{2}}{2} f_y - \frac{4}{\pi} f_z$$

b)
$$\frac{4}{\pi} f_x - \frac{\sqrt{2}}{2} f_y - \frac{4}{\pi} f_z$$

c)
$$\frac{\sqrt{2}}{2} f_x + \frac{4}{\pi} f_y + \frac{4}{\pi} f_z$$

d)
$$\frac{\sqrt{2}}{2} f_x - \frac{4}{\pi} f_y + \frac{4}{\pi} f_z$$

Question C

The absolute minimum m and absolute maximum M of $f(x, y) = 2x^2 + y^2 - 4x$ on the disk $x^2 + y^2 \le 9$ have the values

a)
$$m = -2$$
; $M = 5$
b) $m = -2$; $M = 30$
c) $m = 5$; $M = 30$

d)
$$m = 5$$
; $M = 6$

Question D

Consider the following two surfaces S_1 and S_2 defined by $S_1:-2x^2-z^2=2y-4$ and $S_2:y^2-x^2=-z^2$. The equation of the line tangent to the curve of intersection of the two surfaces at the point $(\frac{2}{\sqrt{3}}, 0, \frac{2}{\sqrt{3}})$ is given by

a)
$$x = -\frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$$
, $y = 16t$, $z = -\frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$, t is a real parameter

b)
$$x = -\frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$$
, $y = -16t$, $z = -\frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$, t is a real parameter

c)
$$x = \frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$$
, $y = 16t$, $z = -\frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$, t is a real parameter

d)
$$x = \frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$$
, $y = -16t$, $z = \frac{8}{\sqrt{3}}t + \frac{2}{\sqrt{3}}$, t is a real parameter

Question E

Evaluate $\int_{-\sqrt{9-y^2}}^{3} \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} e^{x^2+y^2} dx dy$

a)
$$\pi(e^9 - 1)$$

b)
$$\pi(e^9 + 1)$$

c)
$$\frac{\pi}{2}(e^9-1)$$

d)
$$\frac{\pi}{2}(e^9+1)$$

Question F

Evaluate $\int_{-2}^{1} \int_{-2}^{0} \int_{-x}^{2} \frac{\cos(y^2)}{1+z^2} dy dx dz$

a)
$$-\frac{\pi}{4}\sin 4$$

a)
$$-\frac{\pi}{4}\sin 4$$

b) $\frac{\pi}{4}\sin 4$ Debate Club

c)
$$-\frac{\pi}{8}\sin 4$$

d)
$$\frac{\pi}{8}$$
sin 4

Question G

Consider the solid S bounded laterally by $x^2 + y^2 = 1$, below by the xy-plane and above by $z^2 = 4x^2 + 4y^2$. Then $\iiint x^2 dV$ in cylindrical coordinates is given by

a)
$$\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{2r} r^{3} \cos^{2}(\theta) dz dr d\theta$$

b)
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{4r^{2}} r^{3} \cos^{2}(\theta) dz dr d\theta$$

c)
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{2r} r^{3} \cos^{2}(\theta) dz dr d\theta$$

d)
$$\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4r^{2}} r^{3} \cos^{2}(\theta) dz dr d\theta$$

Question H

Find the work done by the field $\vec{F} = y\vec{i} + x\vec{j} + 3z\vec{k}$ along the path $(C_1) \cup (C_2)$ from (0, 1, 0) to (1, 2, 1) where (C_1) and (C_2) are the following curves:

 (C_1) : The curve $y = x^2 + 1$ in the xy-plane, $0 \le x \le 1$

 (C_2) : The line segment from (1, 2, 0) to (1, 2, 1)

- a) $\frac{7}{2}$ b) $\frac{3}{2}$ c) 2

Question I

Apply Green's theorem to evaluate $\int_{C}^{C} (x^2 - y) dx + (2xy + y^2) dy$, where C is the boundary of the region in the first quadrant enclosed by the x-axis, the line x = 1, and the curve $y = x^2$.

- $a) \frac{8}{15}$
- b) $\frac{6}{5}$
- c) $-\frac{2}{15}$
- d) $\frac{8}{15}$

Question J Consider the integral $\iint (x+y)\cos(3y-x)dydx$, where R is the triangular region in the xy-plane bounded by the lines y = 0, y = -x, and 3y - x = 4. Let G be the region in the uvplane which is the image of R under the transformation u = 3y - x and v = x + y. Then

Part 1
$$\iint_{R} (x+y)\cos(3y-x)dydx =$$

- a) $-\iint 4v \cos u du dv$
- b) $\iint_{\frac{\pi}{4}} v \cos u du dv$
- c) $-\iint \frac{1}{4} v \cos u du dv$
- d) $\iint_{\mathbb{R}} 4v \cos u du dv$

Part 2: The region G in the uv-plane is bounded by the lines:

- a) u = 4, u = -v, v = 0
- b) 3v-u=4, u=v, v=0c) u=4, u=v, v=3d) u=3, u=3v, v=0

2) (24 points)

a) (12points) Let D be the region that is bounded from below by z = 1 and from above by $x^2 + y^2 + z^2 = 4$. Sketch D and set up triple integrals in spherical coordinates representing its volume according to the order of integration $d\rho \ d\phi \ d\theta$.

b) (12 points) Set up triple integrals in spherical coordinates representing its volume according to the order of integration $d\phi$ $d\rho$ $d\theta$

3) (8 points) The derivative of a function f(x, y, z) at a point P is greatest in the direction of $\vec{v} = \vec{i} - 2\vec{j} + 2\vec{k}$. In this direction, the value of the derivative is 2. Find ∇f at P.

4) (5 points) Find the line integral of the function f(x, y, z) = xy + y + z over the path $\vec{r}(t) = 2t\vec{i} + t\vec{j} + (2-2t)\vec{k}$, $0 \le t \le 1$

5)(10 points) Consider the field

$$\vec{F}(x, y, z) = (2x\cos y - 2z^3)\vec{i} + (3 + 2ye^z - x^2\sin y)\vec{j} + (y^2e^z - 6xz^2)\vec{k}$$

a) (7 points) Show that \vec{F} is conservative and find a potential function for \vec{F}

b) (3 points) Evaluate the work done by \vec{F} along any smooth path from A(0,0,0) to $B(1,\pi,0)$

6) (8 points) Use Green's theorem to find the outward flux for the field $\vec{F} = 2xy^2\vec{i} + x^2y^2\vec{j}$ across the curve (C): the boundary of the triangular region bounded by the lines y = x, y = -x and y = 1

